
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 5, AUGUST 2020 947

Efficient Video Integrity Analysis Through Container
Characterization

Pengpeng Yang , Student Member, IEEE, Daniele Baracchi , Massimo Iuliani , Dasara Shullani ,
Rongrong Ni , Yao Zhao , Senior Member, IEEE, and Alessandro Piva , Fellow, IEEE

Abstract—Most video forensic techniques look for traces within
the data stream that are, however, mostly ineffective when dealing
with strongly compressed or low resolution videos. Recent research
highlighted that useful forensic traces are also left in the video
container structure, thus offering the opportunity to understand
the life-cycle of a video file without looking at the media stream
itself. In this article we introduce a container-based method to
identify the software used to perform a video manipulation and, in
most cases, the operating system of the source device. As opposed
to the state of the art, the proposed method is both efficient and
effective and can also provide a simple explanation for its decisions.
This is achieved by using a decision-tree-based classifier applied
to a vectorial representation of the video container structure. We
conducted an extensive validation on a dataset of 7000 video files
including both software manipulated contents (ffmpeg, Exiftool,
Adobe Premiere, Avidemux, and Kdenlive), and videos exchanged
through social media platforms (Facebook, TikTok, Weibo and
YouTube). This dataset has been made available to the research
community. The proposed method achieves an accuracy of 97.6%
in distinguishing pristine from tampered videos and classifying the
editing software, even when the video is cut without re-encoding or
when it is downscaled to the size of a thumbnail. Furthermore, it is
capable of correctly identifying the operating system of the source
device for most of the tampered videos.

Index Terms—Video forensics, video container, social media,
integrity, authentication, video tampering, decision trees, machine
learning.

I. INTRODUCTION

D IGITAL videos are becoming more and more relevant
in the communication among users and in providing

Manuscript received December 2, 2019; revised March 26, 2020 and June 10,
2020; accepted June 10, 2020. Date of publication July 8, 2020; date of current
version August 24, 2020. This work was supported in part by the National
Key Research and Development of China under Grant 2016YFB0800404,
in part by National NSF of China under Grants U1936212 and 61672090,
in part by AFRL, in part by DARPA under Grant FA8750-16-2-0188, and in
part by the Italian Ministry of Education, Universities and Research MIUR
under Grant 2017Z595XS. The guest editor coordinating the review of this
manuscript and approving it for publication was Mr. Anderson de Rezende
Rocha. (Corresponding author: Rongrong Ni; Alessandro Piva.)

Pengpeng Yang, Rongrong Ni, and Yao Zhao are with the Institute of Infor-
mation Science, Beijing Jiaotong University, Beijing 100044, China, and also
with the Beijing Key Laboratory of Advanced Information Science and Net-
work Technology, Beijing Jiaotong University, Beijing 100044, China (e-mail:
14120339@bjtu.edu.cn; rrni@bjtu.edu.cn; yzhao@bjtu.edu.cn).

Daniele Baracchi and Dasara Shullani are with the Department of Infor-
mation Engineering, University of Florence, 50139 Florence, Italy (e-mail:
daniele.baracchi@unifi.it; dasara.shullani@unifi.it).

Massimo Iuliani and Alessandro Piva are with the Department of Information
Engineering, University of Florence, 50139 Florence, Italy, and also with the
FORLAB, Multimedia Forensics Laboratory, PIN Scrl, 59100 Prato, Italy (e-
mail: massimo.iuliani@unifi.it; alessandro.piva@unifi.it).

Digital Object Identifier 10.1109/JSTSP.2020.3008088

information. Recent statistics show that the current global aver-
age of video consumption per day stands at 84 minutes and it
is expected to increase and hit 100 minutes per day by 2021.1

Therefore, it is not surprising that digital videos are often in-
volved in investigations and other forensic analysis. At the same
time, video editing programs, both open source (e.g. ffmpeg) and
commercial (e.g. Adobe Premiere), allow users to easily cut and
manipulate videos to create fake contents.

Video Forensics develops algorithms for assessing video in-
tegrity and authenticity by looking at the digital traces left during
the video life-cycle [1]. Most of the existing video forensic
techniques verify the authenticity of a video file by investi-
gating the presence of inconsistencies in pixel statistics. For
example, double encoding or manipulation can be detected by
analyzing prediction residuals [2] or macroblock types [3]–[5].
Similarly, traces of frame rate up-conversion can be used to
prove malicious video processing [6], [7]. Recent works have
also successfully employed deep-learning techniques to detect
video forgeries [8]. Jamimamul et al. [9] focused on interframe
video forgery detection by designing a 3D Convolutional neural
network. Verde et al. [10] introduced a CNN-based approach
to detect and localize splicing manipulation by learning video
codec traces.

A major drawback of most of those techniques is their
high computational cost; furthermore, strong compressions and
downsampling often hide forensic traces, thus severely restrict-
ing the number of scenarios where those methods can be em-
ployed.

Recently, a new research branch highlighted that video
integrity.2 can be determined using information hidden in the
whole video file and not just in the video stream [12]. Video files,
in fact, are written to disk using a specific structure called con-
tainer, comprising multiple streams (video, audio, subtitles) and
metadata, which are exploited by decoding software to correctly
reproduce the video. Guera et al. [13] showed how to identify
forged videos without looking at the pixel space. To do so, they
extracted high level features (multimedia stream descriptors)

1[Online]. Available: https://www.oberlo.com/blog/video-marketing-
statistics, Accessed on March 2020.

2Note that integrity and authenticity are different concepts. Integrity is proved
when the imagery is complete and unaltered, from the time of acquisition or
generation through the life of the imagery; indeed, content authentication is
used to determine whether the visual content depicted in imagery is a true and
accurate representation of subjects and events. More details can be found on
the Best Practices for Image Authentication of the Scientific Working Group on
Digital Evidences [11].

1932-4553 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4655-8291
https://orcid.org/0000-0002-7364-1955
https://orcid.org/0000-0002-5501-4667
https://orcid.org/0000-0003-2753-366X
https://orcid.org/0000-0002-5096-8752
https://orcid.org/0000-0002-8581-9554
https://orcid.org/0000-0002-3047-0519
mailto:14120339@bjtu.edu.cn
mailto:rrni@bjtu.edu.cn
mailto:yzhao@bjtu.edu.cn
mailto:daniele.baracchi@unifi.it
mailto:dasara.shullani@unifi.it
mailto:massimo.iuliani@unifi.it
mailto:alessandro.piva@unifi.it
https://www.oberlo.com/blog/video-marketing-statistics

948 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 5, AUGUST 2020

related to video coding using ffprobe. However, the tree-shaped
container structure is not taken into account, thus discarding
most of the overall available information. Iuliani et al. [14]
highlighted that video integrity can be assessed by looking at
the video file container structure, since any post-processing
operation alter the content and the position of some atoms and
field-values. This approach turned out to be also promising in
classifying the source brand of native videos.

However, [14] merely detects a loss of integrity, without
providing a human-interpretable explanation of the reasoning
behind its decisions. Furthermore, the method has a linear
computational cost since it requires to check the dissimilarity
of the probe video with all available reference containers. As a
consequence, an increase of the reference dataset size leads to
a higher computational effort. Furthermore, both [13], [14] do
not provide any characterization of manipulated videos, nor any
explainability of the achieved outcome.

In this article we introduce an efficient method for the analysis
of video file containers that allows both to characterize identified
manipulations and to provide an explanation for the outcome.
The proposed approach is based on Decision Trees [15], a non-
parametric learning method used for classification problems in
many signal processing fields. Their key feature is the ability to
break down a complex decision-making process into a collection
of simpler decisions. We enriched the tool with a likelihood
ratio framework designed to automatically clean up the container
elements that only contribute to source intra-variability.

With respect to the state of the art, the proposed method,
simply called EVA from now on, offers new forensic oppor-
tunities, such as: identifying the manipulating software (e.g.
Adobe Premiere, ffmpeg, ...); providing additional information
related to the original content history, such as the source device
operating system.

The process is extremely efficient since a decision can be
taken by checking the presence of a small number of features,
independently on the video length or size. Furthermore, EVA
can provide a simple explanation for the process leading to an
outcome, since container symbols used to take a decision can be
inspected. To the best of our knowledge, this is the first video
forensic method with all these desirable traits. Experiments
have been performed using videos produced by 34 modern
smartphones from some of the most popular brands on the
market, e.g. Apple, Samsung, LG, Huawei. Tampered contents
were generated using both automated processing and manual
user operations. This approach allowed us to build a sizeable,
realistic dataset. Manipulations include contents generated us-
ing Exiftool, ffmpeg, Adobe Premiere, Avidemux and Kdenlive.
Eventually, we investigated whether a container-based approach
is effective when dealing with videos exchanged through Face-
book, TikTok, Weibo, and YouTube. Overall, the experimental
validation involved seven thousands videos. This article is organ-
ised as follows: Section II describes the video container standard;
Section III introduces the mathematical tools to represent and
analyse the video file container; Section IV and V are devoted
to the experimental validation of the proposed techniques; fi-
nally, Section VI draws some final remarks and outlines future
works.

Fig. 1. Pictorial representation of an MP4-like video container structure.

II. VIDEO FILE FORMAT

Most smartphones and compact cameras output videos in
mp4, mov, or 3gp format. These video packaging refer to the
same standard, ISO/IEC 14496 Part 12 [16], that defines the main
features of MP4 [17] and MOV [18] containers while leaving a
wide margin for those who implement it. In Fig. 1 we provide an
example of an MP4-like container, a tree-like structure describ-
ing the video file with respect to three aspects: how the bytes
are organized (physical aspect); how the audio/video streams are
synchronized (temporal aspect); and how the latter two aspects
are linked (logical aspect).

Each node (atom) is identified by a unique 4-byte code. It
consists of a header which describes its role in the container
and possibly some associated data. The first atom to appear in
a container has to be ftyp,3 since it defines the best usage
and compatibility of the video content. The video structural
information is separated from the data itself, indeed the first
one is stored in the movie atom (moov) and the second one in
the media data atom (mdat). The moov atom links the logical
and timing relationships of the video-samples, and provides
pointers to their mdat location. It is worth noting that the moov

3The reader can refer to http://www.ftyps.com/ for further details.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

http://www.ftyps.com/

YANG et al.: EFFICIENT VIDEO INTEGRITY ANALYSIS THROUGH CONTAINER CHARACTERIZATION 949

sub-tree can contain one or more trak atoms, depending on the
number of streams present in a video (i.e. visual-stream and/or
audio-stream).

III. PROPOSED APPROACH

We can represent a video container as a labelled tree where
internal nodes and leaves correspond to, respectively, atoms and
field-value attributes. A video container X can be characterised
by the set of symbols {s1, . . . sm}, where si can be: (i) the
path from the root to any field (value excluded), also called
field-symbols; (ii) the path from the root to any field-value
(value included), also called value-symbols. An example of this
representation can be:4

s1 = ftyp/@majorBrand
s2 = ftyp/@majorBrand/isom
. . .
si = moov/mvhd/@duration
si+1 = moov/mvhd/@duration/73432
. . .

Overall, we denote with Ω the set of all unique symbols
s1, . . . , sM available in the world set of digital video containers
X = {X1, . . . , XN}. Similarly,C = {C1, . . . , Cs}denotes a set
of possible origins (e.g., Huawei P9, Apple iPhone 6 s). Given a
container X , the different structure of its symbols {s1, . . . , sm}
can be exploited to assign the video to a specific class Cu.

For this purpose binary decision trees [19] are employed to
build a set of hierarchical decisions. In each internal tree node
the input data is tested against a specific condition; the test
outcome is used to select a child as the next step in the decision
process. Leaf nodes represent decisions taken by the algorithm.
An example is reported in Fig. 3. More specifically, in our
approach we adopted the growing-pruning-based Classification
And Regression Trees (CART) [20].

Given the size of unique symbols |Ω| = M , a video container
X is converted into a vector of integersX �→ (x1 . . . xM)where
xi is the number of times that si occurs into X . This approach
is inspired by the bag-of-words representation [21] used to
reduce variable-length documents to a fixed-length vectorial
representation.

Note that X contains several symbols that are not represen-
tative of any class, thus contributing to class intra-variability
only (e.g. information related to video length, acquisition date
and time). This information is expected to introduce noise in
the decision process and it should be possibly removed. Thus,
we pre-filtered the data in Ω by using the likelihood ratio
framework. Given two classes Cu, Cv, u �= v, and a symbol si,
the log-likelihood ratio (LLR)

logLu,v(si) = log
P (si|Cu)

P (si|Cv)
(1)

is computed by approximating the conditional probabilities

P (si|Cu) = WCu
(si)

P (si|Cv) = WCv
(si),

4Note that @ is used to identify atom parameters and root is used for
visualization purpose but it is not part of the container data.

Fig. 2. LLRs of symbols obtained when comparing native videos with ones
altered through Exiftool. Values far from 0 are automatically included in the
analysis. Values close to 0 in all compared classes are excluded from the analysis.
Note that @ is used to identify a tree leaf.

where WCu
(si) and WCv

(si) are the frequencies of si in
Cu and Cv respectively.5 The symbol si is preserved only if
∃ u, v, u �= v : logLu,v(si) > τ , with τ a threshold, otherwise
it is considered useless and then removed from Ω. It should
be noted that using the likelihood ratio we can possibly keep a
field-symbol while discarding its corresponding value-symbol, or
vice-versa. In this way we can automatically understand whether
the value or the field are relevant for the classification. As an
example, we consider two classes:

Cu: iOS devices, native videos;
Cv: iOS devices, dates modified through Exiftool (see Section V

for details).

In Fig. 2 some achieved LLRs are reported. The sym-
bols moov/udta/XMP_/@stuff, moov/udta/XMP_/@
count, wide/@stuff, wide/@count are clearly rele-
vant in identifying this kind of operation on devices equipped
with iOS. On the other hand, symbols like free/@stuff
will be possibly filtered since their LLR is close to zero. In
this case, the manipulation only affects a small set of sym-
bols. Indeed, the decision tree can detect such a processing
in a single step, by looking, for instance, at the presence of
moov/udta/XMP_/@stuff, as shown in Fig. 3.

IV. INTEGRITY VERIFICATION

The first relevant experimental question is whether the pro-
posed approach is capable of distinguishing between pristine and
tampered videos. To answer that we created a new collection of
videos, starting from VISION [22], a publicly available dataset

5We avoid null frequencies by adding one to both the numerator and the
denominator.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

950 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 5, AUGUST 2020

Fig. 3. Decision tree applied to distinguish iOS native videos from iOS
videos with modified dates through Exiftool. The decision is easily explain-
able since it is taken by simply looking at the presence of the symbol
moov/udta/XMP_/@stuff.

that includes native videos from 35 smartphones of 10 different
brands. As it would have not been feasible to perform the editing
operations, upload, and download of all the videos in VISION,
we selected 4 videos for each device, thus obtaining a total of
140 pristine videos. Then, we created 1260 (140× 9 editing
operations) tampered videos, both automatically generated with
ffmpeg and Exiftool, and manually created through Kdenlive,
Avidemux and Adobe Premiere. More specifically:
� cut with re-encoding: each video was cut through ffmpeg

and re-encoded;6
� cut without re-encoding: each video was cut through

ffmpeg by copying the audio and video coding parameters7

to minimize the traces left by the operation;
� speed up: each video was speeded up8 through ffmpeg;
� slow down: each video was cut through ffmpeg and slowed

down;9
� cut + downscale: each video was cut through ffmpeg and

downscaled10 to the resolution of 320 × 240;
� cut-kd: each video was manually cut through Kdenlive

(v17.12.3) by keeping 5 to 7 seconds and then the video was
saved with the MP4 - the dominating format(H264/AAC)
setting;

� cut-av: each video was manually cut through Avidemux
(v2.7.4) by keeping 5 to 7 seconds and then the video was
saved as copy and MP4 Muxer settings;

� cut-ap: each video was manually cut through Adobe Pre-
miere Pro CC 2019 by keeping 5 to 7 seconds and by saving
as H.264 with medium bitrate setting;

� date change: each video was manually processed through
Exiftool (v11.37) to change the date information within the
metadata.11

We considered ffmpeg, Exiftool, Avidemux and Kdenlive for
two main reasons:

6The operation is performed with ffmpeg version 3.4.6 through the com-
mand ffmpeg -i $file -ss 00:00:03 -t 00:00:05 -vcodec
libx264 -acodec copy $name

7The operation is performed with the command ffmpeg -i $file -ss
00:00:03 -t 00:00:05 -c copy $name

8The operation is performed through the command ffmpeg -i $file
-vf “setpts=0.25*PTS” $name for all the other devices.

9The operation is performed with the command ffmpeg -i $file -ss
00:00:03 -t 00:00:15 -vf “setpts=4*PTS” $name

10The operation is performed on with the command ffmpeg -i $file
-ss 00:00:03 -t 00:00:15 -vf scale=320:240 $name

11The operation is performed with the command exiftool “-
AllDates=1986:11:05 12:00:00” $videos

1) some of them can forge videos in automated way, thus
allowing us to create a dataset of tampered videos large
enough to obtain statistically significant results;

2) they allow even a novice to create persuasive forged
videos, for instance by cutting specific frames, slowing
down or speeding up the streams.

Indeed, some real-world forged videos involved such operations.
The White House suspended access to CNN’s Jim Acosta, after
he refused to give up the microphone while asking a question
about the Russia investigation at a news conference with Presi-
dent Trump. However, the video reporting the event was possibly
speeded up.12 Another example is a viral clip of Nancy Pelosi
that has been edited to give the impression that the Democratic
House speaker was drunk or unwell.13 We also considered videos
manually forged with Adobe Premiere a proficient video editing
tool that can be used by an expert to produce fake contents.

Furthermore, all the produced contents (140 pristine videos
and 1260 tampered ones) were exchanged through different
social media platforms:

YouTube videos: manual upload on YouTube and automated
download through youtube-dl14;

Facebook videos: manual upload and download from Facebook
with the ‘SD’ setting.

Tiktok videos: manual upload and download from TikTok
10.0.0 via a HUAWEI Mate 30 Pro 5 G device with the system
of EMUI 10.0.0, Android 10. Several accounts were used to
overcome the uploading limitation.

Weibo videos: manual upload to Weibo and automated down-
load using Flvcd.0.4.8.1 (http://www.flvcd.com).

The new dataset thus consists of 7000 videos (from now on
EVA-7 K Dataset15).

The container structure, described in Section II, is extracted
from each video by means of the MP4 Parser library [23]. Note
that, due to how the dataset was built, some value-symbols are
always present in some classes even if they are not relevant
for their identification. For instance, all the cut videos have the
same duration even if this is not, per se, relevant for identifying
the editing. As this could lead to artificially higher perfor-
mance, we manually removed the value-symbols associated to
the following fields: @author, @count, @creationTime,
@depth, @duration, @entryCount, @entryCount,
@flags, @gpscoords, @matrix, @modelName, @mod-
ificationTime, @name, @sampleCount, @segment-
Duration, @size, @stuff, @timescale, @version,
@width, @height, @language.

It should also be noted that VISION is composed by several
iOS/Android devices and a single Windows phone. We removed
this latter device (D17) from our tests since it is not a repre-
sentative sample for Windows Phone devices. For this reason,
our approach aims to distinguish between iOS and Android

12[Online]. Available: https://bit.ly/2vniNi5
13[Online]. Available: https://bit.ly/2Vx2BGj
14[Online]. Available: through the command line youtube-dl -f mp4

-o “%(title)s.%(ext)s” “videos_list_link”
15EVA-7 K is available for download from our research group site [Online].

Available: https://lesc.dinfo.unifi.it/en/datasets.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

http://www.flvcd.com
https://bit.ly/2vniNi5
https://bit.ly/2Vx2BGj
https://lesc.dinfo.unifi.it/en/datasets

YANG et al.: EFFICIENT VIDEO INTEGRITY ANALYSIS THROUGH CONTAINER CHARACTERIZATION 951

TABLE I
BALANCED ACCURACIES OBTAINED IN THE BASIC SCENARIO

FOR EACH DEVICE

TABLE II
COMPARISON OF OUR METHOD WITH THE STATE OF THE ART. VALUES OF

ACCURACY AND TIME ARE AVERAGED OVER THE 34 FOLDS

videos only. This is a negligible limitation given that Windows
Phone devices represent less than 0.3% of the mobile devices
market [24].

In order to estimate the real-world performance of the pro-
posed method we adopted an exhaustive leave-one-out cross-
validation strategy. We partitioned our dataset in 34 subsets,
each one of them containing pristine, manipulated, and social-
exchanged videos belonging to a specific device. We performed
each of the experiments hereby described 34 times, each time
keeping one of the subsets out as test set, and using the remaining
33 for training our model. In this way, test accuracies collected
after each iteration are computed on videos belonging to an
unseen device. We reported the mean accuracies obtained among
all the iterations as confusion matrices. During the training we
assigned to each class a weight inversely proportional to the
class frequency. We used the decision trees algorithms included
in scikit-learn [25], a freely available Python toolkit for machine
learning.

We trained our method to distinguish between the two classes
“Pristine” (containing 136 videos) and “Tampered” (containing
1224 videos). We obtained a global balanced accuracy of 98.5%,
failing only for videos produced by D12 (see Table I). The low
accuracy obtained on such a device is reasonably due to the fact
that it is the sole Sony smartphone in our dataset.

As a consequence of our strict leave-one-device-out strategy,
we have no videos belonging to a Sony device in our training set
whenD12 is tested. Thus, our algorithm cannot learn the features
needed to correctly classify those videos. This limitation does
not always apply as different camera models can exhibit very
similar containers. In such a case, a native video can be correctly
classified even if the specific originating device is unavailable
in the training set. This is the case of the LG D290 (D04) that
reaches an accuracy of 0.99.

We also compared our method with two recently proposed
algorithms for video integrity [13], [14]. In Table II we report

Fig. 4. Pictorial representation of some of the generated decision trees.

TABLE III
CONFUSION MATRIX FOR THE SOFTWARE IDENTIFICATION SCENARIO

the mean global accuracy and the average runtime per fold for
the proposed approach and for those two methods.

A. Discussion

EVA provides several improvements with respect to the state
of the art. In comparison with [13] we achieve a higher accuracy.
This can be reasonably attributed to their use of a smaller
feature space; indeed, only a subset of the available pieces
of information are extracted without considering their position
within the video container. On the contrary, EVA features also
include the path from the root to the value, thus providing a
stronger discriminating power. Indeed, this approach allows to
distinguish between two videos where the same information is
stored in different atoms. When compared with [14], EVA is
capable of obtaining better classification performance with a
lower computational cost. In [14] O(N) comparisons are re-
quired since all the N reference-set examples must be compared

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

952 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 5, AUGUST 2020

TABLE IV
CONFUSION MATRIX FOR THE SOFTWARE IDENTIFICATION SCENARIO WHEN THE OS IS TAKEN INTO ACCOUNT

TABLE V
PERFORMANCE ACHIEVED FOR INTEGRITY VERIFICATION ON SOCIAL MEDIA

CONTENTS. WE REPORT FOR EACH SOCIAL NETWORK THE OBTAINED

ACCURACY, TRUE POSITIVE RATE (TPR), AND TRUE NEGATIVE RATE (TNR)
ALL THESE PERFORMANCE MEASURES ARE BALANCED

with a tested video; on the contrary, the cost for a decision tree
analysis isO(1) since the output is reached in a constant number
of steps.

Furthermore, EVA allows a simple explanation for the out-
come. For the sake of example, we report in Fig. 4(a) a sample
tree from the integrity verification experiment: the decision is
taken by up to four checks, just based on the presence of the sym-
bols ftyp/@minorVersion = 0, uuid/@userType,
moov/udta/XMP_ and moov/udta/auth. We also report
in Fig. 4(b) a tree from the blind scenario experiment: in this
case the tree needs to check the absence of just one atom to
classify a YouTube video; at the same time a series of more
complex checks are used to assign a video to other classes. This
shows how a single decision tree can handle both easy- and
hard-to-classify cases at the same time. Neither [14] nor [13]
provide an equivalent feature. Moreover, EVA is equipped with
a formal likelihood ratio framework that can estimate the rele-
vance of symbols for specific tasks. This framework has been
used to automatically remove symbols that only contribute to
class intra-variability.

V. MANIPULATION CHARACTERIZATION

We also performed a set of experiments designed to show
that the proposed method, as opposed to the state of the art, is
also capable of identifying the manipulating software and the
operating system of the originating device. More specifically,
we tried to answer the following questions:

A Software identification: Is the proposed method capable
of identifying the software used to manipulate a video? If
yes, is it possible to identify the operating system of the
original video?

B Integrity Verification on Social Media: Given a video
from a social media platform (YouTube, Facebook, TikTok
or WeiBo), can we determine whether the original video
was pristine or tampered?

C Blind scenario: Given a video that may or may not have
been exchanged through a social media platform, is it
possible to retrieve some information on the video origin?

A. Software Identification

In this scenario we only analyze videos that either are native,
or that have undergone a manipulation. This time, however,
we trained our algorithm to classify which software has been
used to tamper the video, if any. Our classes are thus: “native”
(136 videos), “Avidemux” (136 videos), “Exiftool” (136 videos),
“ffmpeg” (680 videos), “Kdenlive” (136 videos), and “Premiere”
(136 videos).

In this experiment EVA obtained a global balanced accuracy
of 97.6%; the detailed results reported in Table III show that
the algorithm achieved a slightly lower accuracy in identifying
ffmpeg with respect to the other tools. This is reasonably due
to the fact that ffmpeg library is used by other software and,
internally, by Android devices.

We also trained our algorithm to classify both the editing soft-
ware used to tamper the video, if any, and the operating system
of the device originally used for the acquisition. The classes for
this scenario are: “Android-native” (84 videos), “iOS-native”
(52 videos), “Android-avidemux” (84 videos), “iOS-avidemux”
(52 videos), “Android-exiftool” (84 videos), “iOS-exiftool” (52
videos), “Android-ffmpeg” (420 videos), “iOS-ffmpeg” (260
videos), “Android-kdenlive” (84 videos), “iOS-kdenlive” (52
videos), “Android-premiere” (84 videos), and “iOS-premiere”
(52 videos).

A summary of the results obtained by this experiment is
reported in Table IV. Our approach maintains good performance
in correctly identifying the editing software. We notice, however,
that the operating system used for videos manipulated with
Kdenlive or with Adobe Premiere is often misclassified. At the
same time, both those programs are always identified correctly.
This indicates that the container’s structure of videos saved by
Kdenlive and Adobe Premiere is probably reconstructed in a
software-specific way.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

YANG et al.: EFFICIENT VIDEO INTEGRITY ANALYSIS THROUGH CONTAINER CHARACTERIZATION 953

TABLE VI
CONFUSION MATRIX FOR THE BLIND SCENARIO

B. Integrity Verification on Social Media

In this scenario we tested YouTube, Facebook, TikTok and
Weibo videos to determine whether they were pristine or ma-
nipulated prior the upload.

A summary of the results obtained by our method is reported
in Table V. We achieved global balanced accuracies of 0.76,
0.80, 0.79, and 0.60 on Facebook, TikTok, Weibo, and Youtube,
respectively. Such results are characterised by low true negative
rates, and thus it cannot be considered effective in this scenario,
as many tampered videos are incorrectly classified as pristine.

The poor performance are mainly due to the social media
transcoding process that flattens the containers almost inde-
pendently on the video origin. As an example, after YouTube
transcoding, videos produced by Avidemux and by Exiftool have
exactly the same container representation. We do not know
how the videos are processed by the considered platforms due
to the lack of public documentation but we can assume that
uploaded videos undergo custom/multiple processing. Indeed,
social media videos need to be viewable on a great range of
platforms, and thus need to be transcoded to multiple video
codecs and adapted for multiple resolutions and bitrates. Thus,
it seems plausible that those operations could discard most of
the original container structure.

C. Blind Scenario

In this scenario we considered videos that may or may not
have been exchanged through a social media platform and we
would like to extract the most complete information possible. We
used all the videos in our dataset and we trained our classifier to
distinguish (i) whether the video was downloaded from a social
media platform; (ii) whether the video was tampered and, if
so, which software was used; (iii) whether the original video
belonged to an Android or iOS device.

A summary of the results obtained by our method is reported
in Table VI. Even without any prior knowledge of the video
origin, we are still able to distinguish between native and tam-
pered videos. Our method is also able of correctly identifying
videos belonging to YouTube, Facebook, TikTok and Weibo,
even though in those cases it is not possible to make further
claims on the video authenticity. In most cases we are also able
to correctly classify the operating system of the source device.

VI. CONCLUSION

In this article we proposed an efficient forensic method for
checking video integrity. If a manipulation is detected, the
proposed method allows to identify the editing software and, in
most cases, whether the original video belonged to an Android
or iOS device.

This is achieved by exploiting a decision tree classifier ap-
plied to a vector based representation of the video container
structure, enriched with the likelihood ratio framework that is
employed to automatically remove container elements that only
contribute to source intra-variability. The proposed method, in
case of tampered videos, is able to characterise the software
that performed the manipulation with an accuracy of 97.6%,
even when the video is cut without re-encoding. Except for
manipulations performed with Adobe Premiere and Kdenlive,
the proposed method correctly determines the operating system
of the video source device.

As opposed to the state of the art, the proposed method is
extremely efficient and can provide a simple explanation for
its decisions. A new experimental dataset of 7000 videos was
also created and shared with the research community, including
contents generated with five editing tools (ffmpeg, Exiftool,
Adobe Premiere, Avidemux, and Kdenlive) and four social media
platforms (Facebook, TikTok, Weibo and Youtube). The current
limitation of the method is that a container-based approach can
identify whether the video belongs to a social medial platform
like YouTube, Facebook, TikTok or Weibo, but it cannot be effec-
tively applied on such contents for authenticity assessment, since
the transcoding operation wipes out most of the forensic traces
from the video container. Future works will aim to improve our
tool by adding handcrafted features to improve the performance
on social media contents.

ACKNOWLEDGMENT

The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be inter-
preted as having to do with the official policies or endorsements,
either expressed or implied, of the Air Force Research Labora-
tory and the Defense Government. Pengpeng Yang would like to

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

954 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 14, NO. 5, AUGUST 2020

acknowledge the China Scholarship Council, State Scholarship
Fund, that supports his joint Ph.D program.

REFERENCES

[1] S. Milani et al., “An overview on video forensics,” APSIPA Trans. Signal
Inf. Process., vol. 1, pp. 1229–1233, 2012.

[2] T. Shanableh, “Detection of frame deletion for digital video forensics,”
Digit. Investigation, vol. 10, no. 4, pp. 350–360, 2013.

[3] D. Vázquez-Padın, M. Fontani, T. Bianchi, P. Comesaña, A. Piva, and M.
Barni, “Detection of video double encoding with GOP size estimation,” in
Proc. IEEE Int. Workshop Inf. Forensics Secur., 2012, pp. 151–156.

[4] A. Gironi, M. Fontani, T. Bianchi, A. Piva, and M. Barni, “A video forensic
technique for detecting frame deletion and insertion,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2014, pp. 6226–6230.

[5] D. Vázquez-Padín, M. Fontani, D. Shullani, F. Pérez-González, A. Piva,
and M. Barni, “Video integrity verification and GOP size estimation via
generalized variation of prediction footprint,” IEEE Trans. Inf. Forensics
Secur., vol. 15, pp. 1815–1830, Nov. 2019.

[6] X. Ding, Y. Gaobo, R. Li, L. Zhang, Y. Li, and X. Sun, “Identification of
motion-compensated frame rate up-conversion based on residual signal,”
IEEE Trans. Circuits Syst. Video Technol., vol. 28, no. 7, pp. 1497–1512,
Jul. 2017.

[7] M. Xia, G. Yang, L. Li, R. Li, and X. Sun, “Detecting video frame rate
up-conversion based on frame-level analysis of average texture variation,”
Multimedia Tools Appl., vol. 76, no. 6, pp. 8399–8421, 2017.

[8] D. D’Avino, D. Cozzolino, G. Poggi, and L. Verdoliva, “Autoencoder with
recurrent neural networks for video forgery detection,” Electron. Imag.,
vol. 2017, no. 7, pp. 92–99, 2017.

[9] J. Bakas and R. Naskar, “A digital forensic technique for inter–frame video
forgery detection based on 3D CNN,” in Proc. Int. Conf. Inf. Syst. Secur.,
2018, pp. 304–317.

[10] S. Verde, L. Bondi, P. Bestagini, S. Milani, G. Calvagno, and S. Tubaro,
“Video codec forensics based on convolutional neural networks,” in Proc.
25th IEEE Int. Conf. Image Process., 2018, pp. 530–534.

[11] S. W. G. on Digital Evidence, “SWGDE Best Practices for Image Authen-
tication,” 2018. [Online]. Available: https://www.swgde.org/documents/,
Accessed on: Nov. 12, 2019.

[12] T. Gloe, A. Fischer, and M. Kirchner, “Forensic analysis of video file
formats,” Digit. Investigation, vol. 11, pp. S68–S76, 2014.

[13] D. Güera, S. Baireddy, P. Bestagini, S. Tubaro, and E. J. Delp, “We
need no pixels: Video manipulation detection using stream descriptors,” in
Proc. Int. Conf. Mach. Learn., Synthetic Realities: Deep Learn. Detecting
AudioVisual Fakes Workshop, 2019.

[14] M. Iuliani, D. Shullani, M. Fontani, S. Meucci, and A. Piva, “A video
forensic framework for the unsupervised analysis of MP4-like file con-
tainer,” IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 635–645,
Mar. 2018.

[15] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[16] Information Technology—Coding of Audio-Visual Objects, Part 12: Iso
Base Media File Format, 3rd ed, ISO/IEC 14496, ISO, Geneva, Switzer-
land 2008.

[17] Information Technology—Coding of Audio-Visual Objects, Part 14: MP4
File Format, ISO/IEC 14496, ISO, Geneva, Switzerland, 2003.

[18] Quicktime File Format, Apple Computer, Inc., Cupertino, CA, USA, 2001.
[19] S. R. Safavian and D. Landgrebe, “A survey of decision tree classi-

fier methodology,” IEEE Trans. Syst., Man, Cybern., vol. 21, no. 3,
pp. 660–674, May/Jun. 1991.

[20] L. Breiman, Classification and Regression Trees. Evanston, IL, USA:
Routledge, 2017.

[21] H. Schütze, C. D. Manning, and P. Raghavan, “Introduction to information
retrieval,” in Proc. Int. Commun. Assoc. Comput. Mach. Conf., 2008,
vol. 39.

[22] D. Shullani, M. Fontani, M. Iuliani, O. Al Shaya, and A. Piva, “VISION: A
video and image dataset for source identification,” EURASIP J. Inf. Secur.,
vol. 2017, no. 15, 2017, doi: 10.1186/s13635-017-0067-2.

[23] Apache, “Java mp4 parser,” [Online]. Available: http://www.github.com/
sannies/mp4parser, Accessed on: Jul. 2020.

[24] “Statcounter: Globalstats 1999-2020,” [Online]. Available: https:
//gs.statcounter.com/os-market-share/mobile/worldwide, Accessed on:
Jul. 2020.

[25] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” J. Mach.
Learn. Res., vol. 12, pp. 2825–2830, 2011.

Authorized licensed use limited to: Beijing Jiaotong University. Downloaded on November 20,2020 at 10:02:21 UTC from IEEE Xplore. Restrictions apply.

https://www.swgde.org/documents/
https://dx.doi.org/10.1186/s13635-017-0067-2
http://www.github.com/sannies/mp4parser
https://gs.statcounter.com/os-market-share/mobile/worldwide

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

